

LA-UR-14-25994

Approved for public release; distribution is unlimited.

Title: nEDM at SNS

Author(s): Clayton, Steven

Intended for: 5th International Symposium on LEPTON MOMENTS, 2014-07-21/2014-07-24

(Centerville, Massachusetts, United States)

Issued: 2014-07-30

nEDM at SNS

Steven Clayton

Los Alamos National Laboratory

for the nEDM@SNS Collaboration

Overview

- LHe-filled measurement cell confining ultracold neutrons
- Applied electric and magnetic fields
- Correction for or insensitivity to B-field changes
- Based on concept by Golub & Lamoreaux, Phys. Rep. 237 (1994) 1-62.

The nEDM@SNS Collaboration

R. Alarcon, S. Balascuta

Arizona State University

G. Seidel

Brown University, Providence

A. Kolarkar, E. Hazen, V. Logashenko, J. Miller, L. Roberts

Boston University

D. Budker, G. Iwata, B.K Park

University of California at Berkeley

J. Boissevain, R. Carr, B. Filippone, M. Mendenhall,

A. Perez Galvan, C. Pena, R. Picker, R. Schmid

California Institute of Technology

M. Ahmed, M. Busch, P. Chu, H. Gao, G. Swift, Y. Zhang, W.Z. Zheng

Duke University

I. Slvera

Harvard University

L. Bartoszek, D. Beck, C. Daurer, J.-C. Peng, S. Williamson

University of Illinois Urbana-Champaign

M. Karcz, C.-Y. Liu, J. Long, H.-O. Meyer, M. Snow

Indiana University

C. Crawford, T. Gorringe, W. Korsch, E. Martin, S. Malkowski, G. Phelps, B. Plaster, D. Wagner

University of Kentucky

S. Clayton, M. Cooper, M. Espy, N. Fomin, T. Ito, M. Makela, A. Matlachov, E. Olivas, J. Ramsey, W. Sondheim, P. Volegov, J. Yoder

Los Alamos National Laboratory

K. Dow, D. Hasell, E. Ihloff, J. Kelsey, R. Milner, R. Redwine, J. Seele, E. Tsentalovich, C. Vidal

Massachusetts Institute of Technology

D. Dutta, E. Leggett,

Mississippi State University

R. Golub, C. Gould, D. Haase, A. Hawari, P. Huffman, D. Kendellen, E. Korobkina, C. Swank, A. Young

North Carolina State University

R. Allen, V. Cianciolo, P. Mueller, S., Penttila, W. Yao, Q. Ye

Oak Ridge National Laboratory

M. Hayden

Simon-Fraser University

G. Greene

The University of Tennessee

S. Stanislaus

Valparaiso University

S. Baeβler

The University of Virginia

EXPERIMENTAL METHOD

nEDM Measurement Principle

- Non-zero d_n causes the precession frequency to be slightly different for E and B parallel vs. anti-parallel
- For E = 75 kV/cm and d_n = 5×10⁻²⁸ e-cm, $\Delta \nu$ = 36 nHz Equivalent to ΔB_0 = 1.2 fT
- Statistical uncertainty:

$$\delta d_n \propto \frac{1}{|\vec{E}| T \sqrt{N_{UCN}}}$$

Dual Role of Polarized Helium-3

Co-magnetometer:

- Measure 3 He precession frequency ν_3 to correct ν_n for B-field shifts.
- Negligible ³He EDM

Neutron spin analyzer:

 Highly spin-dependent capture reaction, n+³He→p + T + 764 keV,

Detection of $n+3He \rightarrow p+T$

- Neutron absorption on 3 He is highly spin dependent ($\sigma_{\uparrow \downarrow} >> \sigma_{\uparrow \uparrow}$)
- Reaction products of n+³He→p+t generates UV scintillation light (80 nm) in LHe.
- The UV light will be downconverted by a wavelength shifter and detected by PMTs.

Spin dependent n-³He absorption reaction provides a measurement of the difference of the neutron precession frequency and the ³He precession frequency.

Free Precession Method

A dilute admixture of polarized 3 He atoms is introduced to the bath of SF 4 He (x = $N_3/N_4 \sim 10^{-10}$ or $\rho_{3He} \sim 10^{12}/cc$) as comagnetometer

Signature of EDM appears as a shift in ω_3 - ω_n corresponding to the reversal of \boldsymbol{E} with respect to \boldsymbol{B} , corrected by ω_3 .

3He concentration needs to be adjusted to maximize the sensitivity

- Low concentration → small BR for capture events, weak SQUID signals
- High concentration → short storage time

³He Co-magnetometer Readout

$$d_{n} = \frac{\hbar}{2E} \left[2\pi (f_{s}^{\uparrow} - f_{s}^{\downarrow}) - \underbrace{(\gamma_{3} - \gamma_{n})}_{\gamma_{3}} 2\pi (f_{3}^{\uparrow} - f_{3}^{\downarrow}) \right]$$
scintillation
signals ~10 Hz
3
The precession readout ~100 Hz

To match statistical error of scintillation signal, we need $\delta f_3 \approx 26 \mu \rm{Hz}$ per 800 s measurement period.

Expected ³He magnetization signal amplitude: 2.3 fT

Kim Y. J., Clayton S. M. <u>IEEE Transactions on Applied Superconductivity</u> **23**, 2500104 (2013).

Spin Dressing

- Apply oscillating B-field in x-direction
- Spin precesses with $\omega(t) = \gamma B_x(t)$
- Angle with z-axis: $\theta(t) = \gamma (B_{rf}/\omega_{rf}) \cos \omega_{rf} t$ $\langle \cos \theta(t) \rangle_T = \frac{1}{T} \int_T \mathrm{d}t \cos \left[(\gamma B_{rf}/\omega_{rf}) \cos \omega_{rf} t \right] = J_0(\gamma B_{rf}/\omega_{rf})$

• Thus, the spin responds to a small B-field along z-axis with $\gamma_{\rm eff} = \gamma_0 J_0(X)$

Dressed Spin Method for nEDM

A strong non-resonant RF field

$$\mathbf{B}_{\mathbf{rf}} \perp \mathbf{B}_{\mathbf{0}}, \, \mathbf{B}_{\mathbf{rf}} >> \mathbf{B}_{\mathbf{0}}, \, \omega_{\mathbf{rf}} >> \omega_{\mathbf{0}}$$
$$\gamma' = \gamma J_{\mathbf{0}} \left(\gamma B_{\mathbf{rf}} / \omega_{\mathbf{rf}} \right) = \gamma J_{\mathbf{0}} \left(X \right)$$

• Can tune the dressing parameter $(X = \gamma_n B_{rf}/\omega_{rf})$ until the relative precession between ³He and neutrons is zero $(X = X_c)$.

$$d_n = \frac{\hbar}{2E} \left[2\pi (f_s^{\uparrow} - f_s^{\downarrow}) - \underbrace{ (\gamma_3' - \gamma_n')}_{\gamma_3'} 2\pi (f_3^{\uparrow} - f_3^{\downarrow}) \right]$$
scintillation signals
$$= 0 \text{ at at "critical dressing"}$$
3He precession frequency

Dressed-Spin Feedback/Modulation

- If non-zero EDM, $\omega_{rel} = \omega_n \omega_3 = \pm (2ed_nE/\hbar)J_0(X_c)$ - Relative phase: $\theta_{n3}(t) = \pm 2e\tilde{d}_nEt/\hbar$
- Introduce modulation of X: $X(t) = X_c + \varepsilon \cos \omega_m t$ $\omega_{rel} \sim \varepsilon \cos \omega_m t \pm k \tilde{d}_n E$ (for some constant k) $\delta \theta(t) \sim (\varepsilon / \omega_m) \sin \omega_m t \pm k \tilde{d}_n E t$
- Scintillation rate $S \propto (\delta \theta)^2$
 - If EDM, first harmonic increases linearly with t.
 - If no EDM, only second harmonic appears.
- Apply feedback to dressing parameter to zero first harmonic; then this feedback vs. E-field direction is the EDM signal.
- Detailed discussion in Golub&Lamoreaux, Phys. Rep. 237 (1994) 1-62, including QM treatment, effect of pseudomagnetic field, noise analysis, etc.

EXPERIMENTAL DESIGN

Strategy

- Intense source of UCNs:
 - In situ production by cold neutrons in He-II
 - Long UCN storage time
- High E-field
 - Good dielectric properties of LHe.
- Long coherence time:
 - Shielding and uniform B_0 field (B_{rf} rel. uniformity)
 - Long UCN storage time
 - Non-depolarizing walls
- High polarization of helium-3 & UCN:
 - Helium-3 atomic beam source
 - Polarized cold neutron beam
- Implement both Free Precession and Dressed Spin methods in the same apparatus.
 - Scintillation light detection (same for both methods)
 - SQUID gradiometers for 3He precession frequency measurement (Free Precession method only)

Superthermal Production of UCN

R.Golub and J.M.Pendlebury, Phys.Lett.A 62,337,(77)

- •8.9 Å cold neutrons get down-scattered in superfluid ⁴He by exciting elementary excitation
- Up-scattering process is suppressed by a large Boltzman factor
- No nuclear absorption

- Expect a production of ~ 0.2-0.3 UCN/cc/s
- With a 500 second lifetime, ρ_{UCN} ~100-150/cc and N_{UCN} ~3-4x10⁵ for each of the two 3 liter cells

Spallation Neutron Source (SNS) at ORNL

•SNS construction completed: 2006

Fundamental Neutron Physics Beamline (FNPB)

nEDM Apparatus (Design Study) ^ 18 Measurement cycle: 0. Establish HV & uniform B₀. 1. Load pol. ³He through valves in cells. Upper 2. Create UCNs in cells from cold n beam. cryostat 3. Apply $\pi/2$ pulse. 4. Do Free Precession or Dressed Spin 6 m measurement. ³He services 5. Remove depol. ³He from cells. 6. Goto 1. Lower 3 layer μ-metal shield cryostat 8.9 Å neutron beam Central detector volume Magnet and shielding package

Central Detector System (Design Study)

UCN Storage Time Tests at LANL

Storage time measurement cycle

- UCNs are loaded into the cell;
- 2. Cell valve is closed;
- 3. Variable holding time;
- Cell valve is opened and remaining UCNs drain into monitor detector.

More tests are planned w/new NCSU prototype cells.

Electric field for nEDM experiments

Sensitivity goes as

$$\delta d_n \propto E^{-1}$$

- The electric field strength for the previous room temperature experiments limited to ~ 10 kV/cm.
 - Problem: field emission electrons at the insulator-cathode junction.

- It is expected that a higher electric field can be used in nEDM experiments in which the measurement cell is immersed in LHe.
 - How high a field can be applied stably?
 - What is the effect of an insulator between the electrodes?
 - What is the dependence on temperature, pressure, electrode material and properties, etc?

Requirements/Goals for HV

Electric field goal:

70kV/cm inside the measurement cells

Inner dimension: $40 \times 7.62 \times 10.16 \text{ cm}^3$

Wall thickness: 1.27 cm

Minimum leakage current between the electrodes

Electrode material requirements:

Electrodes made of PMMA coated with conductive material

Electrical resistivity: $10^2 \Omega/\Box$ < Rs < $10^8 \Omega/\Box$

Robust to thermal cycling and sparking Minimal

activation due to exposure to neutron beam

Non-magnetic

Fabrication technique scalable to large (10x40x80 cm³) complicated 3D shape

Large Scale HV Test Apparatus

- Need for potentials > 600 kV (75 kV/cm across 7 cm plus 2 cm cell walls)
- Capacitance multiplier: variable capacitor, potential increases as the spacing
- Demonstrated voltage amplification (~ 600 kV at 4.2 K).

Medium-Scale HV Design

Medium Scale Electrodes

- For the initial test, we used electrodes that have the so-called Rogowski profile.
- The field in the gap (~1-2 cm) is uniform and is the highest in the system.
- Allow us to sample a large area of the electrode surface. Note: breakdown is a random process: ball-plane and ball-ball geometries only sample a very limited surface area.
- First test used electropolished SS electrodes.
- Planned tests:
 - Grooved electrode w/PMMA spacer ring;
 - PMMA cell between electrodes
 - Coated PMMA electrodes

Eventually: Full-Scale HV Test with Central Detector prototype.

Magnet System Inner Dressing Coil 50K Heat Shield Outer Dressing Coil \ 4K Heat Shield Superconducting Lead Shield Ferromagnetic Shield Gradient and shim coils $B_0 = 10 - 50 \text{ mG}$ $B_0 \cos\theta$ Magnet

Uniformity requirements:

- Uniformity of 5×10^{-4} from relaxation times for the polarized neutrons and 3 He
- $< \partial B_x/\partial x > < 0.05 \,\mu gauss/cm, < \partial B_z/\partial z > < 0.1 \,\mu gauss/cm, < \partial B_y/\partial y > < 0.1 \,\mu gauss/cm from geometric phase effects.$

½-scale cryogenic magnetic package @ Caltech

- \bullet Cryogenic system studied at operating field (3 $\mu T)$
- Measured gradients (few ppm/cm) result in geometric phase systematic of few x 10^{-28} e-cm

³He Services

Atomic Beam Source

Purification System

- Heat flush and diffusion methods is used to move ³He
- ³He flow is controlled by heaters, valves, and pressurizers.

Full scale cryogenic light collection test @ ORNL

Also exploring alternative readout: wavelength-shifting fibers and SiPMs.

SQUID Tests (for Free Precession Method)

- Sufficient signal-to-noise was demonstrated with 3.5-meter pickup leads and candidate high-inductance SQUID.
- No increase in baseline noise due to an applied B₀-field was observed.
- A reference SQUID-magnetometer is effective to cancel out vibrational noise.

Systematics study apparatus @ NSCU PULSTAR reactor

- A system that consists of a single full size measurement cell at the nEDM operating temperature, no E-field.
- Long term goal: address key scientific issues
 - Critical dressing of n-3He system
 - Geometric phase studies
 - Spin manipulation studies
- Short term goal
 - UCN storage in the cell
 - Injection and removal of ³He

Projected Systematic Uncertainties

Error Source	Projected systematic error (e-cm)	Comments
Linear vxE	< 2 x 10 ⁻²⁸	Uniformity of B ₀
Quadratic vxE	< 0.5 x 10 ⁻²⁸	E field reversal to 1%
Pseudomagnetic field effects	< 1 x 10 ⁻²⁸	π/2 pulse, compare two cells
Uncompensated leakage current effects (gravitational offset)	< 0.2 x 10 ⁻²⁸	Leakage current < 1 nA
vxE from rotational UCN flow	< 1 x 10 ⁻²⁸	Uniformity of E, damping time of the rotational motion of UCN
Heat from leakage currents	< 1.5 x 10 ⁻²⁸	Leakage current on the inner surface of the cell wall correlated with the E field direction
Miscellaneous	< 1 x 10 ⁻²⁸	

Summary

- A new nEDM experiment is under development with a goal sensitivity 90% CL σ_d < (3-5) × 10⁻²⁸ e-cm in 300 live-days
- Free precession method:
 - SQUIDs to read out the ³He precession frequency
 - Scintillation signal for the n relative precession frequency
- Dressed spin method:
 - Strong RF field to match n and ³He effective magnetic moments.
 - Modulation/feedback of dressing parameter based on scintillation signal.
- Ongoing development/demonstration of many aspects of the apparatus (a subset was shown here).